\(\int \frac {1}{(a+c x^2)^{3/2} (d+e x+f x^2)} \, dx\) [74]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 416 \[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\frac {c (a e+(c d-a f) x)}{a \left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}-\frac {f \left (2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right ) \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {f \left (2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right ) \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}} \]

[Out]

c*(a*e+(-a*f+c*d)*x)/a/(a*c*e^2+(-a*f+c*d)^2)/(c*x^2+a)^(1/2)-1/2*f*arctanh(1/2*(2*a*f-c*x*(e-(-4*d*f+e^2)^(1/
2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2))*(2*a*f^2+c*(e^2-2*d*f+e*(-4*d
*f+e^2)^(1/2)))/(a*c*e^2+(-a*f+c*d)^2)*2^(1/2)/(-4*d*f+e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))
^(1/2)+1/2*f*arctanh(1/2*(2*a*f-c*x*(e+(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-
4*d*f+e^2)^(1/2)))^(1/2))*(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))/(a*c*e^2+(-a*f+c*d)^2)*2^(1/2)/(-4*d*f+
e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2)

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 416, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {990, 1048, 739, 212} \[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=-\frac {f \left (2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )\right ) \text {arctanh}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2+a c e^2\right ) \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {f \left (2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )\right ) \text {arctanh}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left ((c d-a f)^2+a c e^2\right ) \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {c (x (c d-a f)+a e)}{a \sqrt {a+c x^2} \left ((c d-a f)^2+a c e^2\right )} \]

[In]

Int[1/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]

[Out]

(c*(a*e + (c*d - a*f)*x))/(a*(a*c*e^2 + (c*d - a*f)^2)*Sqrt[a + c*x^2]) - (f*(2*a*f^2 + c*(e^2 - 2*d*f + e*Sqr
t[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt
[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*Sqrt[e^2 - 4*d*f]*(a*c*e^2 + (c*d - a*f)^2)*Sqrt[2*a*f^2 + c*(e^2
- 2*d*f - e*Sqrt[e^2 - 4*d*f])]) + (f*(2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e
+ Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqr
t[2]*Sqrt[e^2 - 4*d*f]*(a*c*e^2 + (c*d - a*f)^2)*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 990

Int[((a_.) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(2*a*c^2*e + c*(2*
c^2*d - c*(2*a*f))*x)*(a + c*x^2)^(p + 1)*((d + e*x + f*x^2)^(q + 1)/((-4*a*c)*(a*c*e^2 + (c*d - a*f)^2)*(p +
1))), x] - Dist[1/((-4*a*c)*(a*c*e^2 + (c*d - a*f)^2)*(p + 1)), Int[(a + c*x^2)^(p + 1)*(d + e*x + f*x^2)^q*Si
mp[2*c*((c*d - a*f)^2 - ((-a)*e)*(c*e))*(p + 1) - (2*c^2*d - c*(2*a*f))*(a*f*(p + 1) - c*d*(p + 2)) - e*(-2*a*
c^2*e)*(p + q + 2) + (2*f*(2*a*c^2*e)*(p + q + 2) - (2*c^2*d - c*(2*a*f))*((-c)*e*(2*p + q + 4)))*x + c*f*(2*c
^2*d - c*(2*a*f))*(2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, q}, x] && NeQ[e^2 - 4*d*f, 0] && Lt
Q[p, -1] && NeQ[a*c*e^2 + (c*d - a*f)^2, 0] &&  !( !IntegerQ[p] && ILtQ[q, -1]) &&  !IGtQ[q, 0]

Rule 1048

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Dist[(2*c
*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[
b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]

Rubi steps \begin{align*} \text {integral}& = \frac {c (a e+(c d-a f) x)}{a \left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}-\frac {\int \frac {-2 a c \left (a f^2+c \left (e^2-d f\right )\right )-2 a c^2 e f x}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx}{2 a c \left (a c e^2+(c d-a f)^2\right )} \\ & = \frac {c (a e+(c d-a f) x)}{a \left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}-\frac {\left (f \left (2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{\sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right )}+\frac {\left (f \left (2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{\sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right )} \\ & = \frac {c (a e+(c d-a f) x)}{a \left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}+\frac {\left (f \left (2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{\sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right )}-\frac {\left (f \left (2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{\sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right )} \\ & = \frac {c (a e+(c d-a f) x)}{a \left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}-\frac {f \left (2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right ) \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {f \left (2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right ) \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.50 (sec) , antiderivative size = 346, normalized size of antiderivative = 0.83 \[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\frac {c (c d x+a (e-f x))-a \sqrt {a+c x^2} \text {RootSum}\left [a^2 f+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {a c e f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )+2 c^{3/2} e^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-2 c^{3/2} d f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+2 a \sqrt {c} f^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-c e f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{a \sqrt {c} e+4 c d \text {$\#$1}-2 a f \text {$\#$1}-3 \sqrt {c} e \text {$\#$1}^2+2 f \text {$\#$1}^3}\&\right ]}{a \left (c^2 d^2+a^2 f^2+a c \left (e^2-2 d f\right )\right ) \sqrt {a+c x^2}} \]

[In]

Integrate[1/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]

[Out]

(c*(c*d*x + a*(e - f*x)) - a*Sqrt[a + c*x^2]*RootSum[a^2*f + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^2 - 2*Sq
rt[c]*e*#1^3 + f*#1^4 & , (a*c*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] + 2*c^(3/2)*e^2*Log[-(Sqrt[c]*x) +
 Sqrt[a + c*x^2] - #1]*#1 - 2*c^(3/2)*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 + 2*a*Sqrt[c]*f^2*Log[-(
Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 - c*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2)/(a*Sqrt[c]*e + 4*
c*d*#1 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 + 2*f*#1^3) & ])/(a*(c^2*d^2 + a^2*f^2 + a*c*(e^2 - 2*d*f))*Sqrt[a + c*x^
2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1456\) vs. \(2(377)=754\).

Time = 0.79 (sec) , antiderivative size = 1457, normalized size of antiderivative = 3.50

method result size
default \(\text {Expression too large to display}\) \(1457\)

[In]

int(1/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x,method=_RETURNVERBOSE)

[Out]

-1/(-4*d*f+e^2)^(1/2)*(2/((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)*f^2/((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^
2*c-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*
e^2)/f^2)^(1/2)+2*c*(e+(-4*d*f+e^2)^(1/2))*f/((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)*(2*c*(x+1/2*(e+(-4
*d*f+e^2)^(1/2))/f)-c*(e+(-4*d*f+e^2)^(1/2))/f)/(2*c*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c^2*(e
+(-4*d*f+e^2)^(1/2))^2/f^2)/((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f
+e^2)^(1/2))/f)+1/2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)-2/((-4*d*f+e^2)^(1/2)*c*e+2*a*f^
2-2*c*d*f+c*e^2)*f^2*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2
)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4
*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e
^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+
1/2*(e+(-4*d*f+e^2)^(1/2))/f)))+1/(-4*d*f+e^2)^(1/2)*(2/(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)*f^2/((
x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*(-(-4*d*
f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)+2*c*(e-(-4*d*f+e^2)^(1/2))*f/(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f
^2-2*c*d*f+c*e^2)*(2*c*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))-c*(e-(-4*d*f+e^2)^(1/2))/f)/(2*c*(-(-4*d*f+e^2)^(1/2)
*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c^2*(e-(-4*d*f+e^2)^(1/2))^2/f^2)/((x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c-c*(e-
(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^
2)^(1/2)-2/(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)*f^2*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d
*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2
/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2/
f*(-e+(-4*d*f+e^2)^(1/2)))^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(-(-4*d*f+e^2)
^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 27447 vs. \(2 (375) = 750\).

Time = 74.11 (sec) , antiderivative size = 27447, normalized size of antiderivative = 65.98 \[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\text {Too large to display} \]

[In]

integrate(1/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

Too large to include

Sympy [F]

\[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\int \frac {1}{\left (a + c x^{2}\right )^{\frac {3}{2}} \left (d + e x + f x^{2}\right )}\, dx \]

[In]

integrate(1/(c*x**2+a)**(3/2)/(f*x**2+e*x+d),x)

[Out]

Integral(1/((a + c*x**2)**(3/2)*(d + e*x + f*x**2)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(1/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*d*f-e^2>0)', see `assume?` f
or more deta

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\text {Exception raised: AttributeError} \]

[In]

integrate(1/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Exception raised: AttributeError >> type

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\int \frac {1}{{\left (c\,x^2+a\right )}^{3/2}\,\left (f\,x^2+e\,x+d\right )} \,d x \]

[In]

int(1/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x)

[Out]

int(1/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)), x)